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Solution of the dispersionless Hirota equations 

R Camollt§ and Y Kodama$ll 
t Department of Mathematics. University of Illinois, Urbana U 61801, USA 
3 Depamnent of Mathematics, Ohio State University, Columbus, OH 43210, USA 

Received 5 June 1995 

Abstract. The dispersionless differential Pay identity is shown to be equivalent to a kernel 
expansion providing a universal algebraic characterization and solution of the dispersionless 
Hirota equations. Some calculations based.on D-bar data of the action are also indicated. 

1. Introduction 

The KP hierarchy and its reductions (such as the NKdV equation) have been recognized 
as among the most important integrable systems in several fields of physics (cf [2- 
4,6,8,13,14,16,20,22,25,28,29,30]). The solution of the hierarchy can be described 
by the so-called s-function, and the Hirota bilinear formulae provide the governing 
equations for the T function (cf [2,3,6,8,9,12,28,29]). In particular the z functions 
are identified as partition functions of matrix models for describing 2D gravity. The T 
function structure of the hierarchy was found by the Kyoto group [U], and the essence of 
it may be summarized as the bilinear identity between the wavefunctions (Baker-Akhiezer 
functions) of the Lax operator. The bilinear identify also leads to the Fay identity, which 
corresponds to the Fay trisecant identity describing quasi-periodic solutions of the KP 
hierarchy (cf [2,  8,28,29]). As a quasi-classical (dispersionless) limit of the KP hierarchy, 
the dispersionless KP (DKP) hierarchy and various reductions thereof also play an increasingly 
important role in topological field theory and its connections to string theory and ZD gravity 
(cf [3,4,6,7,10,13,14, 16,22,25,28,29,30]). There are also connections to twistor theory 
in the spirit of [28,29] but we do not pursue this direction here. 

In this paper, we discuss the dispersionless limit of the Hirota bilinear equations, which 
are obtained from the dispersionless (differential) Fay identity [29], for a characterization of 
the DKP hierarchy. We start in section 2 to provide background information on the KP and 
DKP hierarchies necessary for the material which follows. In particular, the dispersionless 
Hirota equations are formulated as the polynomial identities among the symbols with two 
indices F,, (theorem I). The solutions of the dispersionless Hirota equations are then given 
in terms of a residue formula F,, = Resp[hmdh"] where h = P +E;" Un+l P-" and A$ is 
the polynomial part of h" in P. The solution F,, is also identified as the second derivative 
of the free energy F = logsom with respect to the coupling constants T, and T,,, i.e. 
F,, = a2F/aT,8Tn, which gives the two-point functions in a topological field theory (cf 
[3,4,10,13,14,25]). In section 3, we present our main result (theorem 2). namely that the 
dispersionless (differential) Fay identity is equivalent to a kernel expansion which generates 
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the dispersionless Hirota equations. Here the kernel is given by l/[P(A) - P(@)J  where 
P(A) (or P ( p ) )  is the inversion of A (or p )  = P + Cy U,+IP-~.  This kernel plays an 
important rule for the integrability of the DKP hierarchy (cf [22]). In section 4, we show 
how the Hamilton-Jacobi and hodograph analysis in [17-19,21,22] for the DNKdV equation 
yields the D-bar data in the scattering problem, and this gives a moment-type formula for 
the F,,,. in terms of the D-bar data. In the DKdV situation this actually yields a direct formula 
for the .F,. providing an immediate alternative method of calculation (theorem 3). 

2. Background on KP and DKP 

One can begin with two pseudodifferential operators (a = a/ax) 

R Carroll and Y Kodama 

m m 
L = a + U"+, a-n w = 1 + W n a -  

1 1 

called the Lax operator and gauge operator, respectively, where the, generalized Leibnitz 
rule with a-la = 88-I = 1 applies: 

for any i E Z, and L = Wa W-' . The KP hierarchy then is determined by the Lax equations 
(a. = a m )  

a.L = IB., LI := B,L - LB, (2.3) 
where B, = L; is the differential part of L" = L; + L I  = CO m n i  t i  a + E:; !.;a'. One 
can also express this via the Sato equation 

a,w w-I =-LE (2.4) 
which is particularly well adapted to the DKP theory. Now define the wavefunction via 

where tl = x. There is also an adjoint wavefunction $* = W*-'exp(-g) = 
v*(t, A) exp(-g), w*(t, A) = 1 + 
L* = A* a,,$ = B"$ L*** = AV an** = -B;**. (2.6) 
(cf [8] for L', w*. etc). Note that the Kp hierarchy (2.3) is then given by the 
compatibility conditions among these equations with an isospectral property. Next one 
has the fundamental tau function r ( f )  and vertex operators X. X* satisfying 

w,?(t)A-', and one has the equations 



Solution of rhe dispersionless Hirota equations 6375 

where the xj are the elementary Schur polynomials, which arise in many important formulae 
(cf below). 

We now mention the famous bilinear identity which generates the entire KP hierarchy. 
This has the form 

$ ( r ,  A)$*@', A) dA = 0 (2.9) 

where &(.) dh is the residue integral about 00, which we also denote Res,J(.)dA]. Using 
(2.7) this can also be written in terms of tau functions as 

r ( t -  [A-'])r(t'+ [h-l])exp(<(t,A) - g ( t ' ,  A)) dA = 0. (2.10) 

This leads to the characterization of the tau function in bilineai form expressed via 
L 

( t + t - y y .  t ' + t + y )  

(2.11) 

where Di is the Hirota derivative defined as DTu . b = (a'"/as,")u(t, + sj)b(tj - sj)lS=o 

and 5 = (01, IDz ,  fD3, .  . .). In particular, we have from the coefficients of yn in (2.11), 

D1D.r. 5 = 2xn+1(5)r. 5 (2.12) 

which are called the 'Hirota bilinear equations. Such calculations with vertex operator 
equations and residues, in the context of  finite-zone situations where the tau function is 
intimately related to theta functions, also led historically to the Fay trisecant identity, which 
can be expressed generally as the Fay identity via (cf [2,8], here 'c.P.' means cyclic 
permutations) 

C ( s 0  - SI)(SZ - S3)T(t  + [sol + [sll)r(t + b Z l +  b 3 l )  = 0 .  (2.13) 

This can also be derived from the bilinear identity (2.10). Differentiating this in so, then 
setting so = s3 = 0, then dividing by SISZ, and finally shifting t + t - [szl, leads to the 
differential Fay identity (a =~a/ax),  

c.p. 

r(t)ar(t  + k 1 -  [QI) - r(t  + [s11 - [s2i)as(t) 

= ( q l  - s, -1  ) [c(t + [Si 1 - [s2l)a(t) - + hl)r(t - [szl)l . (2.14) 

The Hirota equations (2.12) can also be derived from (2.14) by taking the limit $1 + s2. 
The identity (2.14) will play an important role later. 

Now for the dispersionless theory (DKP) one can think of fast and slow variables, etc, 
or averaging procedures, but simply one takes fn + et, = T, (fl = x + E X  = X) in the 
KP equation U, = prxx + ~ U U ,  + :a-lUyu, (y = tz, t = t3),  with a, -+ Ea/aT,, and 
~ ( t , )  + u(T,) to obtain aru = 3uuX + ga-luy'vv when E --f o (a = a/ax now). n u s  

I 

the dispersion term uxxr is removed. In terms of hierarchies we write 

(2.15) 

and think of un(T/e) = U.(T)+O(e), etc. One then takes a WKB form for the wavefunction 
with the action S [21]: 

= exp [ ~ s C T ,  A)]. (2.16) 
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Now replacing 3, by €3". where 3, = a/aT. now, we define P := as = S,. Then 
ciai+ --f Pi+ as E + 0 and the equation L+ = A+ becomes 

R Carroll and Y Kodnma 

m m .I = P + u,,+lp-n P = A - P~+,A-' 
1 I 

(2.17) 

where the second equation is simply the inversion of the first. We also note from a,$ = 
Bn+ =.E: bnm(6a)'"+ that one obtains a,S = &(P) = A: where the subscript (+) now 
refers to powers of P (note Ean+/+ --f a,S). Thus B,, = L; + E,,(&') = A; = bn,Pm 
and the KP hierarchy goes to 

a.P = aa, (2.18) 
which is the DKP hierarchy (note 3,s = B. + 8.P = aa,,). The action S in (2.16) can be 
computed from (2.7) in the limit E --f 0 as 

a,F W 

s = T.A" - C -A-~ 
1 1 "  

where the function F = F ( T )  (free energy) is defined by [28] 

r=exp[$F(T)]. 

The formula (2.19) then solves the DKP hierarchy (2.18), i.e. P = = 8 s  and 

(2.19) 

(2.20) 

(2.21) 

where F., = a,a,F which play an important role in the theory of DKP. 

etc in the form 
Now following [29] we write the differential Fay identity (2.14) with Ean replacing 8, 

r(T - E [ / L - ' ]  - E[i-'])r(T) 
r(T - c[p-'])r(T - P - - l  

E a  
= 1 + - [log (7(T - ~[y-ll)) - log (7(T - €[A-']))] 

(2.22) 

(in (2.14) take f --f t - [SI], SI = p- ' ,  $2 = A-' and insert E at the appropriate places; 
note T is used in (2.22)). One notes from (2.8) that exp(t(3, A-')) = Er xj(3)A-j. so 
taking logarithms in (2.22) and using (2.20) yields 

In passing this to limits only the second-order derivatives survive, and one gets the 
dispersionless differential Fay identity (note that ~ ~ ( - 6 5 )  only contributes -6aJn here) 

(2.24) 

Although (2.24) only uses a subset of the Pliicker relations defining the KP hierarchy, it 
was shown in [29] that this subset is sufficient to determine KP; hence (2.24) characterizes 
the function F for DKP. Following 171, we now derive a dispersionless limit of the Hirota 
bilinear equations (2.12), which we call the dispersionless Hirota equations. We first note 
from (2.19) and (2.17) that Fln = nP.+I so 

m 
= 5 P,+lh-" = A - P(i) 

1 n 1  
(2.25) 
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Consequently the right-hand side of (224)  becomes 

and for p --f A with P := 8j.P we have 

Then using the elementary Schur polynomial defined in (2.8) and (2.17),  we^ obtain 

where Z i ,  i > 2 are defined by 

(2.26) 

(2.27) 

(2.28) 

Thus we obtain the dispersionless Hirota equations 

F I ~  xj+1(21 E O ,  Zz,  .. . , Zj+l).  (2.29) 
These can also be derived directly from (2.12) with (2.20) in the limit E + 0 or by expanding 
(2.26) in powers of A-". We list here a few entries from such an expansion (cf [7]): 
A-4: 4F;I - iFI3 + iF2z = 0 

A-? F I I F I Z - ~ F I ~ + ~ F Z ~ = O  
IF3 - I F 2  3 

A-6: 3 I I  z I Z . - F I I F I ~ + ~ ~ ~ ~ - ~ F ~ ~ - ~ F ~ = O  
A-7: F ; I F I z - F I z F I ~ -  F I I F I ~ + ~ F I ~ - ~ F ~ ~ - ~ F z s = O  

A-8: ~F;I - F I I F : ~  - F: F I ~  + iF:3 + FIZFM 

+ F I I F I ~ - ~ F I ~ + ~ F ~ ~ + ~ F ~ ~ + ~ F ~ ~ = O  

(2.30) 

+2FiiFizF14 - fF:4 + F?IFIS - F13Fis - FIZFIS  

- F I I F I ~  + qF19 - &Fs,,- &F46 
- 1 F  21 37 - { F a = 0 .  

7 

These equations are discussed in various ways below; we will also show the equivalence 
of the dispersionless Fay differential identity with another formula of a Cauchy kemel in 
section 3. Note here that for U = Fl1 the first equation in (2.30) is a DKP equation 
UT = 3UUx + :a-'U,, and other equations in the hierarchy are generated in a similar 
way. 
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It is also interesting to note that the dispersionless Hirota equations (2.29) or (2.30) can 
be regarded as algebraic equations for 'symbols' Fmn, which are defined via (2.21). i.e. 

Lemma. I .  The symbols satisfy 

F,,, = F,, = Res~[I~dI:l 

Prooj One need simply observe that 

(2.31) 

(2.32) 

(2.33) 

Here we have used I? = Am - 2.7 and Res[d(ab)] = 0 = Res[da b + a db] for pseudo- 
0 differential or formal Laurent expansions a and b. 

Thus we have the following theorem. 

Theorem 1. For I ,  P given algebraically as in (2.17), with no apriori connection with 
DKP, and for i3. defined as in the last equation of (2.31) via a formal collection of the 
symbols with two indices F,,, it follows that the dispersionless Hirota equations (2.29) or 
(2.30) are quite simply the polynomial identities between Fmn. 

In the next section we give a direct proof of this fact, i.e. the F,,,. defined in (2.31) 
satisfy the dispersionless Hirota equations, which we designate by (2.29) in what follows. 

Now one very natural way of developing DKP begins with (2.17) and (2.18) since 
eventually the Pj+l can serve as universal coordinates (cf here [4] for a discussion of this in 
connection with topological field theory (TFr)). This point of view is also natural in terms 
of developing a Hamilton-Jacobi theory involving ideas from the hodograph-Riemann- 
invariant approach (cf [6,18,21,22] and (4.18) below) and in connecting NKdV ideas to 
TFT, strings and quantum gravity (cf [IO] for a survey of this). It is natural here to work 
with Q, := (l/n)B, and note that 8,s = i3, corresponds to a,P = 8.3, = naQ,. In this 
connection one often uses different time variables, say T,' = nT,, so that 8LP = aQ,, and 
G,, = F,, fmn is used in place of Fmn. Here, however, we will retain the T, notation 
with 8,s = nQ.  and a,,P = naQ. since one will be connecting a number of formulae to 
standard KP notation. Now given (2.17) and (2.18) the equation a,P = n8Q. corresponds to 
Benney's moment equations and is equivalent to a system of Hamiltonian equations defining 
the DKP hierarchy (cf [6,22] and remarks after (2.18); the Hamilton-Jacobi equations are 
8.S = nQn with Hamiltonians nQ,(X. P = 8.9)). 

We now have an important formula for the functions Q,: 

Proposition I ([ZZ]). The generating function of 8p Q, (A)  is given by 

(2.34) 
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Prooj! Multiplying (2.17) by A"-'aph, we have 

Anaph = P ( h ) A = - l a p A  + p2Xn-*a,.A + . . . . 
Taking the polynomial part leads to a recurrence relation 

 ape,+,(^) = P w a p ~ m +  ~ ~ a ~ e . - ~ c ~ ~ + ~ . . + p , a ~ e ~ c n ~ .  
Then noting a p Q l  = 1. QO = 1, and summing up (2.36) as follows, we obtain 

apQ,+i@) - P @ ) a p Q n @ )  - c~ P j + i a ~ Q i @ )  
i+j- 

which is just (2.34) 

6379 

(2.35) 

(2.36) 

(2.37) 

U 

This is a very important kernel formula which will come up in various ways in what 
follows. In particular we note 

dfi 8~ Qn+i (A) (2.38) 

which gives a key formula in the Hamilton-Jacobi method for the DKP [22]. Thus it 
represents a Cauchy kernel and has a version on Riemann surfaces related to the prime 
form (cf [23]). In fact the kernel is a dispersionless limit of the Fay prime form. Also note 
here that the function P(A)  alone provides all the information necessary for the DKP theory. 
This will be discussed further in the next section. 

1 f i n  

2ni k P ( p )  - P ( A )  

3. Solutions and variations 

We have already discussed solutions of the dispersionless Hirota equations (2.29) briefly in 
theorem I, but we go now to some different points of view. First let us prove the following 
theorem. 

Theorem 2. 
identity (2.24). 

The kernel formula (2.34) is equivalent to the dispersionless differential Fay 

This will follow from the following lemma. 

Lemma 2. 
(2.8). Then 

Let x , ( Q l , .  . . , Q.) denote the elementary Schur polynomials defined as in 

a p e ,  = x,-i(Qi.. . . Q n - i ) .  (3.1) 

Prooj! 
obtain 

We integrate the kernel (2.34) with respect to P ( k ) .  and normalize at A = 00 to 

Equating this with (2.34) gives the result. 0 



6380 

Proof of theorem 2. Using equation (2.21), the left-hand side of (2.24) can be written as 

R Carroll and Y Kodama 

- 1  - m 1  
LHS = E - [E "1 = E --[/I" - & ( / 1 ) ]  

nh" 1 nhn mpm I 

(3.3) 

On the other hand, the right-hand side of (2.24) is calculated as indicated in (2.25) and 
remarks thereafIer. Thus 

=-Iog(A-p)+log [( A-E- : ::) - ( .-E-- : :;)] 
(3.4) 

m 

l d P ( A )  - &)I = IogA - Qn(p)A-" (3.5) 
1 

which leads to (3.2). Then lemma 2 implies the assertion. 0 

Theorem 2 implies that the dispersioniess Hirota equations (2.29) can be derived from the 
kernel formula (2.34) which is a direct consequence of the definition of F,, in (2.31). Thus 

0 

We will now express the x , ( Q l ,  . . . , Q,) as polynomials in Q l  = P with the coefficients 

theorem 2 gives a direct proof of theorem 1. 

given by polynomials of P,+I. First we have: 

Lemma 3. One can write 

P - I  0 0 0 .,. 0 -  

Pz P -1 0 0 ... 0 

(3.6) 
. .  . . .  . .  

P, P,-, ... P4 P3 PI P - 

ProoJ In terms of x.(Ql.  . . . , Q,) = 3 p  Q.+l the recursion relation (2.36) can be written 
in the form x,, = Pxn+ + P2x,-* + . . . 4- P,xo. It is easy to derive the determinant 
expression from this form. 

This leads to a rather evident fact, which we express as a proposition because of its 
importance. Thus: 

Proposition 2. The F,,,,, can be expressed as polynomials in P,+I = F l j / j .  



Solution of the dispersionless Hirota equationi 6381 

a A Q .  = X , , - I ( Q I ;  9 , .  . . , P " - I ) ~ A Q I  ( Q I  = P). We put this together with 
.O 

The dispersionless Hirota eqqations can be solved totally algebraically via 
Thus the 

Prooj 
Q. = D,/n in (2.21) and P in (2.17) to arrive at the conclusion (cf also remark 1). 

Corollary I .  
Fmn = Qmn(Pz, P3.. . . , P,+,) where Qmn is .a polynomial in the Pj+l. 

Fln = nP,+I are generating elements for the Fmn. 

This is of course evident from the dispersionless differential Fay identity (2.24). The 
point here however is to give explicit formulae of F,, in terms of the elementary Schur 
polynomials x,, in (3.6). 

Remrk 1. One can also arrive at this polynomial dependence via the residue formulae 
of lemma 1. As an adjunct to the proof of proposition 2 we note now the following 
explicit calculations. Recall that Ql = P = A - CFPj+lA-j  and generally Q, = 
A'/n - Cp" G,,A-j (Gjn := l$,/jn). Thus from Q2 = A:/2 = Pz/2 +- P2 we get 

(3.7) 

Writing this out yields 

G2m = P2+m - - ' pj+l pk+l . (3.8) 
j+k=m 

This process can be continued with Q3 = A:/3 = P3/3 i PzP i P3, etc. 

I t  is also interesting to note the following relations. 

Propositi& 3. For any n > 2, 

x n ( - Q l ,  ...,- Q n ) = - P n .  (3.9) 

Prooj We obtain (cf equation (2.8)) 

(3.10) 

Hence x : x p - a ( Q ) x a ( - Q )  = 0 for p > 1 which implies xa(-Q)  = -9 fork > 2 from 
the recursion relation (2.36). 0 

Note from P.+] = FIJn that the equations (3.9) give another representation of the 
dispersionless Hirota equations (2.29). 

Remark2 Formulae such as (3.6) and the statement in proposition 2 indicate that in 
fact DKP theory can be characterized using only elementary Schur polynomials since 
these provide all the information necessary. for the kemel (2.34) or equivalently for the 
dispersionless differential Fay identity. This amounts also to observing that in the passage 
from KP to DKP only certain Schur polynomials survive the limiting process E + 0. Such 
terms involve second derivatives of F and these may be characterized in terms of Young 
diagrams with only vertical or horizontal boxes. This is also related to the explicit form of 
the hodograph transformation where one needs only a p  Q. = xn-1 (el, .  . . , Q n - l )  and the 
Pj+, in the expansion of P (cfequation (4.18) here). 
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4. Connections to D-bar 

It was shown in [6,7,17,31] how inverse scattering information is connected to the 
dispersionless theory for KdV and some other situations (Benney equations and vector 
nonlinear Schrodinger equations for example). We will see here that although such 
connections seem generally not to be expected, nevertheless, one can isolate D-bar data for 
S and P in the dispersionless NKdV situations leading to an expression for the generating 
elements FI. = nPn+l which can be useful in computation. The technique also indicates 
another role for the Cauchy-type kernel 1/(P(h)  - POL)) in (2.34). Thus as background 
consider KdV and the scattering problem in the standard form (cf [ 8 ] )  

R Carroll and Y Kodama 

ut = U''' - 6uu' @" -U@ = -k2@. (4.1) 

Let @*(k, x )  - exp(fikx) as x + f w  be Jost solutions with scattering data, T and R, 
determined via 

(4.2) T(k)@-(k,x) = R(k)@+(k,x) + @ + + ( - k , x ) .  

U := -a log($..) = ik - 4' 
Setting @- = exp(-ikx + #(k, x ) )  we have from (4.1) 

@'' - 2i4' + qP = U .  (4.3) 

One seeks expansions 
m CQ u = i k + x -  U. 

I 1 (ik)" (4.4) 

entailing qbn = -U,,. Here for example one can assume f;(l +xz)luldx c w or U E S = 
Schwartz space for convenience so that all of the inverse scattering machinery applies. Then 
T(k) will be meromorphic for Im(k) > 0 with (possibly) a finite number of simple poles 
at kj = ip j  (& > O), IR(k)l is small for large Ikl, k E R, and log(T) = Erch+l /k""  
where c, can be written in terms of the B j  and the normalization of the wavefunction 
@*. For x + w,  Im(k) > 0, @-exp(ikx) + 1/T from (4.2), and taking logarithms 
@(k, CO) = -log(T) which implies 

- 1  * 
I (ik)" j- @n dx  

- log(T) = - (4.5) 

leading to J-", & dx  = 0 with i2"ch+l = J-", &+I dx. Hence the scattering information 
(- c&+,, arising from x-asymptotics, given via R and T) is related to the k-asymptotios & 
of the wavefunction @-. This kind of connection between space asymptotics (or spectral 
data, which are generated by these asymptotic conditions and forced by boundary conditions 
on U here) and the spectral asymptotics of the wavefunction is generally more complicated 
and we refer to a formula in the appendix to [6] describing the Davey-Stewartson (DS) 
situation 

-bix.+1 = / tn2cx dt A (4.6) 

where srx is D-bar data and the wavefunction @ has the form @ = xexp(E) with 
x = 1 + x jA- j  for [AI large (this is in a matrix form). The potentials in'(4.6) occur 
in K,. The D-bar data, or departure from analyticity of x. correspond to spectral data in a 
sometimes complicated way and we refer the reader to [l, 5,6,9,11,15,19,24,26,27] for 
more on this. 
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Now one expects some connections between inverse scattering for KdV and the DKdV 
theory since EX = X means, e.g., x + f o o  - E --f 0 for fixed X .  Now from (4.2), we 
have 

1 1  1 
T 2ik 2ik 
- = -W(@+. @-) := -(@i@- - @+!lo (4.7) 

Given @+ - @ = exp(S/c) and @- - e* = exp(-S/c) (cf [6,7J) one sees that 
W($+,'@-) + 2aS/aX = 2P, and from (2.17) with A = ik 

(4.8) 

Now IoglTl and arg(R/T) have natural roles as~action angle variables (cf [7]) and from 
R = W(@-(k,x), @+(-k,x))/W(@+, e-) one obtains 

(4.9) 

(We have suppressed the slow variables T,.) Thus the scattering data, which are considered 
to be averaged over the fast variables, now depend on the slow variables (in particular, see 
(4.5) and (4.8)). This corresponds to a dynamics of the Riemann surface determined by 
the scattering problem (the Whitham averaging approach). The exponential terms in (4.9) 
could in principle give problems here so we consider this in the spirit of [6,7,17]. Thus 
consider @- = exp(-ikx + @) with @ ( x )  = Jfm @'(e) de. Now I)- is going to have the 
form @- = exp(-S(X, k)/E) and we can iegitimately~expect - S / E  = -ikX/E+@(X/c, k). 
For this to make sense let us write (note E X  = X, €6 = E) 

X I 6  I X  1 
@(X/E, k) = 1, @'(<)d< = - / @'(S/E)dE = -(ikX - S ( X ,  k)) . 

-m E 

Thus for @ ( X / E .  k) to equal E-'(ikX - S ( X ,  k ) )  we must have 
X 

@'(E/€) d Z  = ikX - S(X, k) 

(4.10) 

(4.11) 

where @' = a@/ax. This says that @'(E/€) = ~ ( E / F )  = ?(E) +O(E) which is reasonable 
in the same spirit that &(?/E) = VAT,) + O(E) was reasonable before. Thus we have 

2 (4.12) P E - = & - $  = U  P - U = - k 2  

which corresponds to a dispersionless form of (4.3) in new variables., Note here that 
6'' = d@' /aX --f 0 as E -+ 0. Thus we have: 

Proposition4 The manipulation of variables x .  X in (4.10) and (4.11) is consistent and 
mandatory. It shows that scattering information (expressed via 4 for example) is related to 
the dispersionless quantity S or P.  

as . , 
ax 

Further, we have isolated D-bar data (&S) for S since for P = one can write 
for arbitrary Xo (cf equation (4.11)) 

X 
ikX - S(X, k) = (ik - P(E ,  k)) d 6 .  (4.13) 

Replace -00 by XO for large negative XO, to then get S = s,", P d E  + ikX0.  Thus one 
expects a pole for Ikl --$ a, plus D-bar data along (-n, n). This is in the spirit of 

L 



6384 

[17,18] where it is phrased differently.' Observe that the expression P = places 
us on a two-sheeted Riemann surface with a cut along (-a, a) in the k-plane. Going 
around say f l  on the + sheet one has opposite sides of the cut Pi = i m  and 
P- = - i m ,  so P+ - P- = A P  = 2 i m  which corresponds to D-bar data. 
This then leads to 

R Carroii and Y Kodam 

AS = S+ - S- = A P d 6  = 2 j x ) m d E  = 2ReS+ R XO 
(4.14) 

Note here that P* is real on the cut with P- = -P+ (cf remark 3 €or some general 
comments). 

Consider next the situation of [6,18,22] with a reduction of DKP to 

A := A" = P" + aoPN-'+. . . +a"-' (4.15) 

which is called DNKdV reduction. Assume A ( P )  has N distinct real zeros PI > Pz > .. . > 
P N  with N - I interwoven turning points > Pk. Assume, as 
X -+ -CO, these Riemann invariants Ax -+ 0 monotonically so A -+ P N  with (P-A)  + 0. 
Such situations are considered in [181 and techniques from [22] are adapted to produce 
formulae of the type (W, = apB,) 

= A(&),  P ~ + I  > 

(4.17) 

We see here the emergence of the Cauchy-type kernel from (2.34) in an important role. 
At Ax := A(&) where S, is bounded and P, + w (4.17) yields Tsarev-type generalized 
hodograph formulae (cf 1181). Thus such a formula is 

(4.18) 

Here one has Riemann invariants = A(&) where apA = o and there is a collection L 
of finite cuts through the origin of angles k n j N  (1 < k 6 N - 1) in the A plane with 
branch points 4.  One takes r to be a contour encircling the cuts clockwise (not containing 
p )  and sets r = r- - r+ where (+) refers to the upper half-plane. It turns out that 
SIr+ = Sir- and the contours can be collapsed onto the cuts to yield the last integral in 
(4.17) (see [18] for pictures). By reorganizing the terms in the integrals one can now express 
integrals such as (4.17) in terms of D-bar data of P on the cuts. Thisis straightforward, but 
details for this and other constructions below will he spelled out in [I 11 for completeness. 
Thus P and S are analytic in A for finite A except on the cuts L where there is a jump 
discontinuity AP (yielding AS by integration in X as in (4.14)). We have seen for DKdV 
that A P  = Z J ~ G P  on (-47, f i j  and other DNKdV situations are similar. Moreover 
there is no need to restrict ourself to one time variable T, in (4.17). or for that matter to 
DNKdV. Indeed the techniques that lead to formulae of the type (4.17) are based on [22] 
(cf also [b]), and apply equally well to DKP provided the D-bar data aP for DKP lie in a 
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bounded set C2 (cf remarks below). In this respect, concerning DKP, one first notes that the 
transformation t -+ --t, U + -U sends DKP-I to DW-2 so one expects that any D-bar 
data for S or P will be the same. Secondly, we know from [6,22] that for large p.1 there 
will be formulae of the type (2.34). Let us assume that a'P (and hence 3s) is non-trivial 
only for a region Q where, say, IhJ < M < 00, and let r be a contour enclosing ]AI < M. 
Then without regard for the nature of such data (Riemann-Hilbert data, poles, simple non- 
analytioity, etc) one can in fact derive formulae (4.17) following [6,18,22]. We cannot 
collapse on cuts as in the last equation of (4.17) but we can think of the other formulae in 
(4.17) as integrals over D-bar data 2P or $S. It remains open to describe D-bar data for the 
DKp situations, however. The idea of some kind of limit of spiked cut collections arises, 
but we have not investigated this. In summary we can state: 

Proposizion 5. For DNKdV (or DKP with given bounded D-bar data) one can write 

where r encircles the cuts (or D-bar data) clockwise. The determination of D-bar data here 
is to be made via analysis of the polynomial hN in (4.15) for DNKdV and in this situation 
one can again collapse (4.17) to the cuts. 

Remark 3. Now perhaps the main point of this has been to show that S can be characterized 
via D-bar data of S or P. In general we do not expect D-bar or scattering data for NKdV 
or KP to give D-bar data for S. The case of KdV is probably exceptional here and the 
situation of 117,311 where spectral data for a system of nonlinear Schriidinger equations is 
related to the Benney or DKP hierarchy involves a different situation (the spectral data are 
not related to KP). Furthermore, since KP-I and KP-2 have vastly different spectral or Dbar  
properties and both pass to the same DKP, one does not expect the spectral data to play a 
role. We note also that spectral data are created by the potentids via asymptotic conditions 
for example (and vice versa) whereas D-bar data for DNKdV, arising from the polynomial 
AN, are a purely algebraic matter. 

There is an interesting way in which D-bar data fo r 'P  or S can be exploited. Thus, 
given that S has D-bar data as indicated above in a bounded region, one can say for Ihl 
large and with some analytic function A of h that 

and from (2.19) we get 

(4.20) 

(4.21) 

This is very useful information about 6, since from the computation of (4.21) one could in 
principle Compute all of the functions Fjj, for example. In fact, for DKdV, and possibly 
some other DNKdV situations, one can obtain a direct formula for the F,j. which we 
know to generate all the Fij via lemma 1. Thus for DKdv we know from (4.14) that 
AS = s i  APdX' = Z s 2 J U ( X 1 ,  T )  - k2dX' on the cut L = (-a7 a) in the 
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k plane, and 8s = AS(i/2)& where 6~ is a suitable delta function on L. Adjusting 
variables (5’ = -k2 etc) one can then write 

R Carroll and Y Kodam 

The only X dependence here. is visible and one can differentiate under the integral sign in 
(4.22). Since all F1 ~m = 0 by the residue formula (2.32), for example we take j = 2n - 1 
to obtain 

(2n - 1)U” = (-1y x [ Sin”-20Cos26d6 = (-1y 1 (4.23) 

(here k = a sin 6 and a* = U). We summarize this in (cf [I 11 for more detail): 

Theorem 3. For any situation with bounded D-bar data for S one can compute Fj from 
(4.21). In the case of D K ~ V  with AS as indicated one can use (4.23) to determine directly the 
F1k-1  which will generate all the functions F j j .  Generally, if 8s = 1: 8P(X‘, T, <, i)dX’ 
(asin(4.22)),thenfrom(4.21) Fl j  =( j /~ i ) l Ig j - ’8PdgAdS,andfo rma l ly ,  a .a jF=  
(j/Zxi) 1s <j-’823,  dc ~ d :  since formally an8S = 88,s = 8B.. 

Remark 4. The calculations using (4.22) in fact agree with the determination of FI %-I 

from residue calculations as in lemma 1 (note here 2V2 = -U when adjusting notation 
between sections 2 and 4). In general one may have some difficulties in determining $23, 
or 8P for example, so the formulae (4.22) and (4.23) may be exceptional in this regard. 
However, for DKdV we have checked the validity of these formal integrals for Fnj involving 
$Bn for a number of terms (e.g. F31, F51. F33, F35, and Fs~) against the results of residue 
calculations. Here one can write for n odd 823. = a(; = A<; = P-Ig;AP and one gets 
for n = 2k - 1, j = 2m - 1 

where a2-I iy-’ (cos e )  = cy-’ (P) for P = a cos @ (a2 = U ) .  Let us mention also that 
one can easily write down the tables of Fjj for DNKdV from the table (2.30). Thus for 
DNKdV we have a reduction of the table (2.30) given via F” = F m ~  = 0 for all m. 
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