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Solution of the dispersionless Hirota equations
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Received 5 June 1995

Abstract. The dispersionless differential Fay identity is shown to be equivalent to a kernel
expansion providing a universal algebraic characterization and solution of the dispersionless
Hirota equations. Some calculations based.on D-bar data of the action are also indicated.

1. Introduction

The KP hierarchy and its reductions (such as the NKdV equation) have been recognized
as among the most important integrable systems in several fields of physics (cf [2-
4,6,8,13, 14, 16,20, 22,25,28,29,30]). The solution of the hierarchy can be described
by the so-called r-function, and the Hirota bilinear formulae provide the governing
equations for the t function (cf [2,3,6,8,9,12,28,29]). In particular the ¢ functions
are identified as partition functions of matrix models for deseribing 20 gravity. The 7
function structure of the hierarchy was found by the Kyoto group [12], and the essence of
it may be summarized as the bilinear identity between the wavefunctions (Baker—Akhiezer
functions) of the Lax operator. The bilinear identity also leads to the Fay identity, which
corresponds to the Fay trisecant identity describing quasi-periodic solutions of the kp
hierarchy (cf [2, 8, 28,25]). As a quasi-classical (dispersionless) limit of the KP hierarchy,
the dispersionless KP (DKP) hierarchy and various reductions thereof also play an increasingly
important rofe in topological field theory and its connections to string theory and 2D gravity
(cf [3,4,6,7,10,13, 14, 16,22, 25, 28,29, 30]). There are also connections to tWIStor theory
in the spirit of [28,29] but we do not pursue this direction here.

In this paper, we discuss the dispersionless limit of the Hirota bilinear equations, which
are obtained from the dispersionless (differential) Fay identity [29], for a characterization of
the DKP hierarchy. We start in section 2 to provide background information on the KP and
DKP hierarchies necessary for the material which follows. In particular, the dispersionless
Hirota equations are formulated as the polynomial identities among the symbols with two
indices F,, (theorem I). The solutions of the dispersionless Hirota equations are then given
in terms of a residue formula F,,, = Resp[A™dA"] where A = P +Z] Ups P7" and A is
the polynomial part of A" in P. The solution F,,, is also identified as the second derivative
of the free energy F = log tpke with respect to the coupling constants 7, and 7, ie.
Fopw = 8*F /3T, 8T, which gives the two-point functions in a topological field theory (cf
[3,4, 10, 13, 14,25]). In section 3, we present our main result (theorem 2), namely that the
dispersionless (differential) Fay identity is equivalent to a kernel expansion which generates
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the dispersionless Hirota equations. Here the kernel is given by 1/{P(A) — P(u)} where
P(0) (or P(u))} is the inversion of A (or pu) = P + Ef’ Upt1 P7". This kernel plays an
important rule for the integrability of the DKP hierarchy (cf [22]). In section 4, we show
how the Hamilton-Jacobi and hodograph analysis in [17-19,21, 22] for the DNK4V equation
yields the D-bar data in the scattering problem, and this gives a moment-type formula for
the F,,, in terms of the D-bar data. In the DKdV situation this actually yields a direct formula
for the ‘F,,, providing an immediate alternative method of calculation {theorem 3).

2. Background on Kp and DKP

One can begin with two pseudodifferential operators (8 = 8/dx)
o o0
L=03+Y tpnd™  W=14) wd™ @1
1 1

called the Lax operator and gauge operator, respectively, where the .generalized Leibnitz
rule with 3~19 = 88~! = 1 applies:

oo .
Ff=>y" (I) @/ ot . @2.2)
=0 M )
forany i € Z, and L = W3 W~'. The KP hierarchy then is determined by the Lax equations
(8, = 8/0%,)
8,L=1I[8B, L]:=B,L — LB, (2.3)

where B, = L is the differential part of L* = L% + L* = Yo" €78 + 371 £8'. One
can also express this via the Sato equation

B, WW =" 2.4

which is particularly well adapted to the DKP theory. Now define the wavefunction via

o o0
¥ =Wef = w(r, \et Ei= Y tud” w(t, A =1+ wy()r™" (2.5)
1 1
where t; = x. There is also an adjoint wavefunction ¥* = W*lexp(-§) =
w*(t, A) exp(—§), w*(r,A) =1+ > 7 wr@)A~", and one has the eguations
Ly =M dptr = B, L*Y* = py™ ™ = —Bry*. (2.6)

(cf {8] for L*, w*, etc), Note that the KP hierarchy (2.3) is then given by the
compatibility conditions among these equations with an isospectral property. Next one
has the fundamental tau function () and vertex operators X, X* satisfying

XM E6_Wr e —1])

Ve A= ) z(t) - () 2
‘1) = X*Mr() e tGL (M) efr+ [N '
Ve n = o) z(t) - T(t)

where G (M) = exp(££(3, A1) with 8 = (31, £8,, 185, .. Jand rE=[A "] = (227 1
%)L'z, ...). One also writes

&0 oo
ef :=exp (Z tnl”) = Z Xt toy oo 1A (2.8)
1 0
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where the X; are the elementary Schur polynomials, which arise in many important formulae

(cf below).
We now mention the famous bilinear identity which generates the entire KpP hierarchy,

This has the form
}g W, A, A)dA =0 2.9

where 95‘ (-}dA is the residue integral about co, which we also denote Res,[(-)dA]. Using
(2.7) this can also be written in terms of tau functions as

f T — [T + T Dexp (£ A — £, ) da - 0. (2.10)

This leads to the characterization of the tau function in bilinear form expressed via
G—=t—y,. ' =>t4+7y)

(Z Xn (=23 xn41(D) exp (Z y:Da)) T-7=0 (2.11)
0 1

where D; is the Hirota derivative defined as D}”a b= (Sm/asf‘)a(rj + 5;)b(t ~ 57)s=0
and D = (D;, %Dg, %D3, ...). In particular, we have from the coefficients of y, in (2.11),
DD, -7t =2 (D) - T S @12)
which are called the Hirota bilinear equations. Such calculations with vertex operator
equations and residues, in the context of finite-zone situations where the tau function is
intimately related to theta functions, also led historically to the Fay trisecant identity, which
can be expressed generally as the Fay 1dent1ty via (¢f [2, 8], here ‘c.p.” means cyclic
permutations) -
> (50 — 51)(s2 — s3)r(t + [s0] + [s1 DT + (2] + [53]) = 0. (2.13)
cp.
This can also be derived from the bilinear identity (2.10). Differentiating this in 5, then
setting 50 = 3 = 0, then dividing by s15;, and finally shifting ¢t — # — [s2], leads to the
differential Fay identity (8 =-3/0x),

(ATt + [51] = [52]) — 7 + [s1] — [s2D)37 (D)

= (7 — s o+ [51] = [sa]) 7@ — 7+ [y e — [saD)] - @.14)

The Hirota equations (2.12) can also be derived from (2.14) by taking the limit §; — sz
The identity (2.14) will play an important role Jater.

Now for the dispersionless theory (DXP) one can think of fast and slow variables, etc,
or averaging procedures, but simply one takes f, — ¢, = T ( =x — €x = X) in the
RP equation u; = Juzex + 3u; + 287 uyy, (v =, t = t3), with 8, — €8/87, and
u(t,) = U(T,) to obtain 3 U = 3UUx + 20~ Uyy when € — 0 (3 = 3/3X now). Thus
the dispersion term iy, is removed, In terms of hierarchies we write

o0
Le=€d+ Y unsi(T/€)(€d)™ (2.15)
1

and think of u,(T/€) = U (T)+O(¢), etc. One then takes a WKB form for the wavefunction
with the action § [21]:

¥ = exp ES(T, x)] . (2.16)
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Now replacing 9, by €3,, where 8, = 3/87, now, we define P := 85 = Sx. Then
€3y — Py as € — 0 and the equation Ly = Ay becomes

A=P+Y Upa P~ P=3-Y Pyi™ 2.17)
1 3

where the second equation is simply the inversion of the first. We also note from 8,y =
Bpr =3¢ by (€8)™1 that one obtains 3,5 = B,(P) = A" where the subscript (+) now
refers to powers of P (note €8,%/¢ — 8,5). Thus B, =L} — B,(P) =1 = Y0 bnmP™
and the KP hierarchy goes to

P =3B, (2.18)
which is the DKP hierarchy (note 3,5 = B, = 8, P = 818,). The action S in (2.16) can be
computed from (2.7) in the limit € —= 0as

o F
5= Z T, A" — ——rm (2.19)
where the function F = F(T) (frec energy) is defined by [28]

1
T = exp [EF (,T)] . (2.20)
The formula (2.19} then solves the DKP hierarchy (2.18), i.e. P = By = 85 and

_ —_ 3" o Fu -t
By=8,S =" =3 —A 221)
] :

where Fp,, = 0,8, F which play an important role in the theory of DKP.

Now following [29] we write the differential Fay identity (2.14) with €3, replacing 8,
etc in the form
T(T —e[p!] — e[\~ T(T)
(T — e[uN(T —e[A-1])

=1+ ;f 1 [log (x(T — efu™'D) = log (z(T' — la™']))]
(2.22)

(in (2.14) take t — t —[s1], 51 = p~, 52 = A7} and insert € at the appropriate places;
note T is used in (2.22)}). One notes from (2.8) that exp(’g'(a A = o X @), so
takmg logarithms in (2.22) and using (2.20) yields

A
Z LA Y (—€3) Xm (—€B)VF = log [H— ZM—-————){,,(—GB)GXF:‘ (2.23)
R mn 1

In passing this to limits only the second-order derivatives survive, and one gets the
dispersionless differential Fay identity (note that x,(—e8) only contributes —&d, /n here)

pr”‘k"‘_”‘i—l (1—}:‘“ — 27 F“’). 2.24)
1

n, n=1
Although (2.24) only uses a subset of the Pliicker relations defining the KP hierarchy, it
was shown In [29] that this subset is sufficient to determine KP; hence (2.24) characterizes
the function F for DKP. Following [7], we now derive a dispersionless limit of the Hirota
bilinear equations {2.12), which we call the dispersionless Hirota equations. We first note
from (2.19) and (2.17) that Fy,, = nPy4 s0

}:r" = Z Popii™ = — P(A). (2.25)
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Consequently the right-hand side of (2.24) becomes
log I:P(M) - P(l)]
H—A
and for y — A with £ := 8,2 we have

log P(A) = Z rm-“ = Z ( > — ) Pl (2.26)

=1 J=2 \ntm=j

Then using the elementary Schur polynomial defined in (2.8) and (2.17), we obtain

P(k) Zxr(zl =0,2p,...,Zr~

oQ )
=14) jPr T =14y Fa (2.27)
1 1. ' ]
where Z;, [ 2 2 are defined by
E an
Zi=3Y I . (2.28)
mebn=i man '
Thus we obtain the dispersionless Hirota equations
Frj = x+1(Z1 =0, Zy, ..., Zj41). (2.29)

These can also be derived directly from (2.12) with (2.20) in the limit ¢ — 0 or by expanding
(2.26) in powers of A~". We list here a few entries from such an expansion {(cf [7]):

A sFh— 4P+ Fn=0
AS: Fi1F ~ %F:4+-_§;F23 =0
A6 iR = iFh — FaFis 4+ 3Fs—{Fn— 1Py =0
AT FiFia~ FiaFis—~ FuFua+ 3Fis = §Fa — 1 Fas = 0
%8 iF = Fufly — FiFis + 3Pl + FoFu
+FFis =3B+ e P+ £ Fs+ (Fs =0
A% F} Fa ~ %ng — 2F)1 FiaFy3 — Fl Fis + FisFus (2.30)

+Fi2Fis + Fiy Fig — 2R+ 15 Fas

+%F35 + %Fz’l =0
A0 %Flsl —%Flzlplzz—F]s]FB+FE'2F[3+F“F123 7

+2F) FioFia — SFY + FA Fis — FisFis — FiaFig

—FuFi7 4+ T Fig— 5 Fss = 5 Fag

—&Fyn~ 1Py =0.
These equations are discussed in various ways below; we will also show the equivalence
of the dispersionless Fay differential identity with another formula of a Cauchy kernel in

section 3. Note here that for U = Fy; the first equation in (2.30) is 2 DKP equation
Upr = 30Uy + %8" Uyy and other equations in the hierarchy are generated in a similar

way.
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It is also interesting to note that the dispersionless Hirota equations (2.29) or (2.30) can
be regarded as algebraic equations for ‘symbols’ F,,, which are defined via (2.21), ie.

N
Byi=df=a" =) = (2.31)
i

Lemma.l. The symbols satisfy
Fom = Fn = Resp[A™dAR]. 2.32)
Proof. One need simply observe that
Fom = —Res, [B,dA™] = —Resp[B,d\"™]
= —Resp[ALdA™] = —Resp[A"dA"]
= Resp[A"dA}) = ResplA™dAL] = Fpy,. (2.33)

Here we have used AZ = A™ — A% and Res[d(a&)] = 0 = Res[da b +- a db] for pseudo-
differential or formal Laurent expansions a and b. 0

Thus we have the following theorem.

Theorem 1. For A, P given algebraically as in (2.17), with no @ priori connection with
DKP, and for B, defined as in the last equation of (2.31) via a formal collection of the
symbols with two indices Fy,, it follows that the dispersionless Hirota equations (2.29) or
(2.30} are quite simply the polynomial identities between F,.

In the next section we give a direct proof of this fact, ie. the F,,, defined in (2.31)
satisfy the dispersionless Hirota equations, which we designate by (2.29} in what follows.

Now one very natural way of developing DKP begins with (2.17) and (2.18) since
eventually the P;.; can serve as universal coordinates (cf here [4] for a discussion of this in
connection with topological field theory (TFT)). This point of view is also natural in terms
of developing a Hamilton-Jacobi thecry involving ideas from the hodograph-Riemann-
invariant approach (cf 6, 18,21,22] and (4.13) below) and in connecting NKdV ideas to
TET, strings and quantum gravity (cf {10] for a survey of this). It is natural here to work
with @, = {I/n)B, and note that 8,5 = B, corresponds to 8,P = 853, = ndQ,. In this
connection one often uses different time variables, say T, = nT}, so that 8, P = 30, and
Gun = Fua/mn is used in place of Fon. Here, however, we will retain the T, notation
with 8,5 = nQ, and 8,P = ndQ, since one will be connecting a number of formulae to
standard Kp notation. Now given (2.17) and (2.18) the equation 3, P = nd 0, corresponds to
Benney’s moment equations and is equivalent to a system of Hamiltonian equations defining
the DKP hierarchy (cf [6,22] and remarks after (2.18); the Hamilton-Jacobi equations are
3,8 = nQ, with Hamiltonians n Q,(X, P = 45)).

We now have an important formula for the functions Q,:

Proposition 1 ({22]). The generating function of 8p @, (1) is given by

Il

———e BpQa (M. 2.34
Pm) Ty Z]jpg(m (2.34)
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Proof. Multiplying (2.17) by A""13pA, we have

Maph = PO 10pA 4+ PoA"29p0 4 -+ - . (2.35)
Taking the polynomiﬂ part leads to a recurrence relation
Fp Opr1(A) = PAJOp Qn(A) + Polp Qn (A} +-- -+ Prdp G1(2). (2.36)

Then noting 8pQ; = 1, @y = 1, and summing up (2.36) as follows, we obtain

> (ap Qi) — PG 0n() ~ D Pradsp Q:(A)) w
n=0 i+j=n

~ (u - PR - P,-mrf) > 2 0iu =1 @37
1 1

which is just (2.34). O

This is a very important kernel formula which will come ﬁp in various ways in what
follows. In particular we note

2% _
PP f’o P PO dpe =3pLrp1 (M) : (2.33)

which gives a key formula in the Hamilton—TJacobi method for the DKP {22]. Thus it
represents @ Cauchy kernel and has a version on Riemann surfaces related to the prime
form (cf [23]). In fact the kernel is a dispersionless limit of the Fay prime form. Also note
here that the function P{i) alone provides all the information necessary for the DKP theory
This will be discussed further in the next section. ~

3. Solations and variations

.We have already discussed solutions of the dispersionless Hirota equations (2.29) briefly in
theorem 1, but we go now to some different points of view. First let us prove the following
theorem.

Theorem 2. The kernel formula (2.34) is equivalent to the dispersionless differential Fay
identity (2.24).

This will follow from the following lemma.

Lemma 2. Let y,.(@),..., @,) dencte the elementary Schur polynomials defined as in
(2.8). Then

aPQn =Xn—](Q[~---1 th-l)‘ (31)

Proof We integrate the kernel (2.34) with respect to P (k). and normalize at A = co to
obtain

1 1 = -y = -nr
FOFH Iexp(Z]an(k)x )-Z{jxm-l(gl,...,gmqm : (3.2)

Equating this with (2.34) gives the result. ] O
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Proof of theorem 2. Using equation (2.21), the left-hand side of (2.24) can be written as

=] 1 R
LHS_ZnM [E o }=;m[u — B, {(1)]

SSHE - Samw-cm(-0)-2EE. ey

On the other hand, the nght-hand side of (2.24) is calculated as indicated in (2.25) and
remarks thereafter. Thus

o0
RHS = log I-~L (—l-——)FI”
A—p TN @) on

ool — o Fu) [ S Fu
= —log(A p.)+log|:(l zi:nl”) (,u, an‘)}

= —log(k — u) + log[P (1) — P(u)]. (34)
This implies
o0
10g[P(A) — P(u)} =logh — ) Cnl(w)r™" f 3.5)
1
which leads to (3.2). Then lemma 2 implies the assertion, a

Theorem 2 irnplies that the dispersioniess Hirota equations (2.29) can be derived from the
kernel formula (2.34) which is a direct consequence of the definition of Fp,, in (2.31). Thus
theorem 2 gives a direct proof of theorem 1. N

We will now express the x,(Q, ..., Q,) as polynomials in @; = P with the coefficients
given by polynomials of Pj4.;. First we have:

Lemma 3. One can write

p— —

P -1 0 0O O --- 0
B P -1 0 0
an=det{ 5 B P -1 0 0 3.9, (3.6)
| P, Poy - Pu P P, P
Proof. In terms of x4(Q1. ..., Q) = 8p Qn41 the recursion relation (2.36) can be written
in the form x, = Pxu—1 + Payu—z + --- + Frxo. It is easy to derive the determinant
expression from this form. ]

This leads to a rather evident fact, which we express as a proposition because of its
importance. Thus:

Proposition 2. The F,,, can be expressed as polynomials in Py = Fi;/j.
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Proaf. 00, = xn1(Q1; P2y ooy, Pun)8,.01 (O = P). We put this together with
@, =B,/n in (2.21) and P in (2.17) to amrive at the conclusion (cf also remark 1). O

Corollary I. The dispersionless Hirota equations can be solved totally algebraically via
Fuw = @un(P2, P, ..., Puyn) where @,y is a polynomial in the FPjyy. Thus the
Fi, = nPy:1 are generating elements for the F,,.

This is of course evident from the dispersionless differential Fay identity (2.24). The
point here however is to give explicit formulae of F,, in terms of the elementary Schur
polynomials x, in (3.6}. -

Remark 1. One can also arrive at this polynomial dependence via the residue formulae
of lemma 1. As an adjunct to the proof of proposition 2 we note now the following
explicit calculations. Recall that @y = P = A ~ 3 7" PiqA ™/ and genenally @, =
Atin— Z‘Ix’ Gjnl“f (Gin 1= Fyp/jn). Thus from Oy = .1.3_/2 P%/2+ P, we get

2
I L Py A2 &Gy
—fa=) <= =) = . .
2( Zu)“ﬁ 72 B
Writing this out yields
1 .
G = P2+m — E Z 1;'1'+!Pk+1 . (38)

JHe=m
This process can be continued with Q5 = )L:,;_ /3= P33+ P,P + P, etc.
It is also interesting to note the following relations,
Proposin'bn 3. Foranyn 2?2,

Xn("'le---v_‘Qn):'"Pn- - - ) (39)
Proof. We obtain (cf equation (2.8))

xn(Q) Xm(—) 21 & .
( : ) (Z ) _ZIE ;Xp—k(Q)Xk("Q) =1. (3.10)

Hence zg Xp— (@ xx(— Q) = 0 for p = 1 which implies xz(—@) = — P, for £ > 2 from
the recursion relation (2.36). O

Note from P,y = Fi,/r that the equations (3.9) give another representation of the
dispersionless Hirota equations {2.29).

Remark 2. Formulae such as (3.6) and the statement in proposition 2 indicate that in
fact DKp theory can be characterized uwsing only elementary Schur polynomials since
these provide all the information necessary for the kernel (2.34) or equivalently for the
dispersionless differential Fay identity. This amounts also to observing that in the passage
from KP to DKP only certain Schur polynomials survive the limiting process € = 0. Such
terms involve second derivatives of F and these may be characterized in terms of Young
diagrams with only vertical or horizontal boxes. This is also related to the explicit form of
the hodograph transformation where one needs only dp Qp = Xum1(h, ..., Qn—1) and the
P;.1 in the expansion of P (cf equation (4.18) here).
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4. Connections to D-bar

It was shown in [6,7,17,31] how inverse scattering information is connected 1o the
dispersionless theory for Kdv and some other situations (Benney equations and vector
nonlinear Schridinger equations for example). We will see here that although such
connections seem generally not to be expected, nevertheless, one can isolate D-bar data for
S and P in the dispersionless NKdVv situations leading to an expression for the generating
elements Fi, = nPF,; which can be useful in computation. The technique alsc indicates
another role for the Cauchy-type kernel 1/(P(A) — P{u)) in (2.34). Thus as background
consider Kdv and the scattering problem in the standard form (cf [8])

we=u" ~ 6un’ W —uy =~k (4.1)

Let yr.(k, x) ~ exp(Likx) as x = oo be Jost solutions with scattering data, T and R,
determined via

T{(kyy-(k, x) = R (k, x) + ¥4 (~k, x) . (4.2)
Setting _ = exp(—ikx + ¢ (k, x)) we have from (4.1)
v:=—3log(y.) =ik — ¢ ¢ —2ike’ + % =u. (4.3)
One seeks expansions
F N P L,
¢ = 2 0 v=ik+ Z G (4.4)
entailing ¢, = —v,. Here for example one can assume ffzo(l +x%)|uldx <coorueS=

Schwartz space for convenience so that all of the inverse scattering machinery applies. Then
T (k} will be meromorphic for Im(k) > O with (possibly) a finite number of simple poles
at k; = if; (B; > 0), |R(K)| is small for large |k|, & € R, and log(T) = Zg" cz,,.,.l/kz""']
where ¢, can be written in terms of the 3; and the normalization of the wavefunction
¥+ For x — oo, Im(k) > 0, Y_exp(ikx) — 1/T from (4.2}, and taking logarithms
¢k, ooy = —log(T) which implies

o0 1 o0
—log(T) = Z_; o f_w Pn dx (4.3)

leading 1o o, dom dx = O with i*"comy1 = [ $oms1 dx. Hence the scattering information
(~ Caps1. arising from x-asympiotics, given via R and T') is related to the k-asymptotics ¢,
of the wavefunction y_. This kind of connection between space asymptotics (or spectral
data, which are generated by these asymptotic conditions and forced by boundary conditions
on u here) and the spectral asymptotics of the wavefunction is generally more complicated
and we refer to a formula in the appendix to [6] describing the Davey-Stewartson (DS)
situation

iy = fﬁ [ e aat )

where 5; x is D-bar data and the wavefunction Y has the form ¥ = xexp(E) with
x = 1+ 37" x;A~7 for [A| large (this is in a matrix form). The potentials in (4.6) occur
in x;. The D-bar data, or departure from analyticity of x, correspond to spectral data in a
sometimes complicated way and we refer the reader to [1.5,6,9,11, 15, 19,24, 26,27] for
more on this.
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Now one expects some connections between inverse scattering for Kav and the DKdv
theory since ex = X means, e.g., x — £00 ~ ¢ — 0 for fixed X. Now from (4.2}, we
have

1 1 | ,
T = g VW ¥) = o (U — ) 4.7
Given ¢+ ~ 1 = exp($S/e) and ¥_ ~ ©* = exp(~S/€} (cf [6,7]) one sees that
Wy, ¥_) — 235/3X = 2P, and from (2.17) with A = ik

1 P >, Pn+1 -
—_—=——=1— —_— - 4.8

T ik Z (ik)n+1 “-8)
Now log|7'| and arg(R/T) have natural roles as action angle variables (cf [71) and from
R = Wy (k, x), ¥+ (—k, x)}/ W4, ¥_) one obtains

P(~k) + P(k) S(k) — S(=k)

(We have suppressed the slow variables 7;,.) Thus the scattering data, which are considered
to be averaged over the fast variables, now depend on the slow variables (in particular, see
(4.5) and (4.8)). This corresponds to a dynamics of the Riemann surface determined by
the scattering problem (the Whitham averaging approach). The exponential terms in (4.9)
could in principle give problems here so we consider this in the spirit of [6,7, 17]. Thus
consider _ = exp(—ikx + ¢) with ¢(x) = ffoo ' (£ydE. Now y— is going to have the
form ¥ = exp(—S(X, k)/¢) and we can legitimately expect —5/e = —ikX/e+¢ (X /e, k).
For this to make sense let us write (note ex = X, ¢§ = E) -
pXfe

17X 1
H(X /e, k) = P'(E)dE = Zf_ & (B/€)dE = E(ikX —S(X, k). 4.10)

—o2

Thus for ¢ (X/e, k) to equal e~/ (it X — S(X, £)) we must have
X
[ ¢'(Efe)dE = ikX — S(X, k) 4.11)
-0

where ¢’ = 9¢p/dx. This says that ¢'(E/e) = f(E/f¢) = F(E) + O(¢) which is reasonable
in the same spirit that u,(T;/e) = U,(T}) + O(e) was reasonable before. Thus we have

as i

=——=ik—3¢ = P2P_U=-k (412

X ¢'=v (4.12)

which corresponds to a dispersionless form of (4.3) in new variables.. Note here that

¢" = €3¢’ /30X — 0 as ¢ — 0. Thus we have:

Proposition 4. The manipulation of variables x, X in (4.10) and (4.11) is consistent and
mandatory. It shows that scattering information (expressed via ¢ for example) is related to
the dispersionless guantity § or P.

Further, we have isolated D-bar data (3;5) for S since for P = /U — k> one can write
for arbitrary X¢ (cf equation (4.11})

X
kX — S(X, k) =f (ik — P(E, k) dE. (4.13)

-0
Replace ~oo by Xy for large negative X to then get § = f;{‘i PdE + ikXp. Thus one
expects a pole for [k| — o0 plus D-bar data along (—v'U, +/U). This is in the spirit of
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[17,18] where it is phrased differently. Observe that the expression P = /U — k2 places
us on a two-sheeted Riemann surface with a cut along (——\/L—! , «/F) in the k-plane. Going
around say ~/U on the + sheet one has opposite sides of the cut Py = {/k2 — U and
P_ = —ivk2—=U, s0o P, — P_ = AP = 2is/k? — U which corresponds to D-bar data.
This then leads to

X X
AS=5,.-5_.= APd"-‘:Z[ VU(E) - k2dE =2ReS,. (4.14)
X X
Note here that P is real on the cut with P_ = — P, (cf remark 3 for some general
comments).
Consider next the situation of [6, 18, 22] with a reduction of DKP to
A=AV =pPY¥ PV 2 ay, {4.15)

which is called DNKAV reduction. Assume A(P) has N distinct real zeros Py > P > -+ >
Py with N — 1 interwoven turning points A = A(I;k), Py > B > P.. Assume, as
X — —co, these Riemann invariants A; — 0 monotonically so A — P¥ with (P—1) — 0.
Such situations are considered in [18] and technigues from [22] are adapted to produce
formulae of the type (W,, = 3p5,,)

_ 1 [ S, MHPE, )
SO, ) = PR X = Bu(PCL ), D) = 5 § SRl an (46)
3S 9P 1P S(X,MHPXA)
KRBT = § P - P,

_ P % ASEA)

T 2w Jr P(X, M) — POX, )

_ B#P/‘ 9, Im S(X, A)

= b PEh-PEm @17

We see here the emergence of the Cauchy-type kernel from (2.34) in an jmportant role.
At Az i= AP where S8, is bounded and P, — cc (4.17) yields Tsarev-type generalized
hodograph formulae (cf [18]). Thus such a formula is

X+ Wa(Bu(X), )T, = —L [ B IMSER)
T Jr, P(X, M) — P(X)
Here one has Riemann invariants A, = A(P.) where 3p A = 0 and there is a collection L
of finite cuts through the origin of angles kn/N (1 < k € N — 1) in the i plane with
branch points A;. One takes I to be a contour encireling the cuts clockwise (not containing
1) and sets I' = I'. — I'y where (4) refers to the upper half-plane. It turns out that
Slp, = Slp_ and the contours can be collapsed onto the cuts to yield the last integral in
(4.17) (see [18] for pictures). By reorganizing the terms in the integrals one can now express
integrals such as (4.17) in terms of D-bar data of P on the cuts, This is straightforward, but
details for this and other constructions below will be spelled out in [11] for completeness.
Thus P and S are analytic in k for finite A except on the cuts L where there is a jump
discontinuity AP (yielding AS by integration in X as in (4.14)). We have seen for DKdv
that AP = 2/ — k% on (-‘“w/ﬁ ] Jff } and other DNKdV situations are similar. Moreover
there is no need to restrict ourself to one time variable T;, in (4.17), or for that matter to
DNKdV. Indeed the techniques that lead to formulae of the type (4.17) are based on [22]
(cf also [6]), and apply equally well to DKP provided the D-bar data 8 P for DKP lie in a

(4.18)
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bounded set £ (cf remarks below). In this respect, concerning DKP, one first notes that the
transformation £ — ~¢, U — —U sends DKP-1 to DKP-2 se one expects that any D-bar
data for § or P will be the same. Secondly, we know from [6,22] that for large |A| there
will be formulae of the type (2.34). Let us assume that 3P (and hence §5) is non-trivial
only for a region 2 where, say, |A] < M < co, and let ' be a contour enclosing |A] < M.
Then without regard for the nature of such data (Riemann-Hilbert data, poles, simple non-
analyticity, etcy one can in fact derive formulae (4.17) following [6, 18,22]. We cannot
collapse on cuts as in the last equation of (4.17) but we can think of the other formulae in
(4.17) as integrals over D-bar data 3 P or 3S. It remains open to describe D-bar data for the
DKP sitvations, however. The idea of some kind of limit of spiked cot collections arises,
but we have not investigated this. In summary we can state:

Proposition 5.  For DNKdV {or DKP with given bounded D-bar data) one can write

ax (4.19)

_ 00 B _L S(X, A8 P(X, N
S(X, ) = Pun)X + ;Bn(}’(ﬂ), X)7T, 27 _?g P(X,)\)— P(X, 1)

where I’ encircles the cuts (or D-bar data) clockwise. The determination of D-bar data here
is to be made via analysis of the polynomial A" in (4.15) for DNK4V and in this situation
one can again collapse (4.17)} to the cuts.

Remark 3. Now perhaps the main point of this has been to show that § can be characterized
via D-bar data of S or P. In general we do not expect D-bar or scattering data for NKdv
or KP to give D-bar data for S. The case of Kdv is probably exceptional here and the
situation of [17,31] where spectral data for a system of nonlinear Schrédinger equations is
related to the Benney or DKP hierarchy involves a different situation (the spectral data are
not related to KP). Furthermore, since KP-1 and KP-2 have vastly different spectral or D-bar
propetties and both pass to the same DKP, one does not expect the spectral data to play a
role. We note also that spectral data are created by the potentials via asymptotic conditions
for example (and vice versa) whereas D-bar data for DNKJV, arising from the polynomial
AN are a purely algebraic matter.

There is an interesting way in which D-bar data for' P or § can be exploited. Thus,
given that S has D-bar data as indicated above in a bounded region, one can say for |A|
large and with some analytic function A of A that

S= A+—-—-ff—-——d§'f\d§

‘A'"Eﬁzwlffw‘s“ AdE (4.20)

and from (2.19) we get
3 F = —ffgl 15.5d; A dz . 4.21)

This is very useful information about Fj, since from the computation of (4.21) one could in
principle compute all of the functions F;;, for example. In fact, for DKdv, and possibly
some other DNKAV situations, one can obtain a direct formula for the Fy;, which we
know to generate all the Fi; via lemma 1. Thus for DKav we know from (4.14) that

AS = [y APAX' = 2fy JUX,T)—k2dX’ on the cut L = (=T, ~/T) in the
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k plane, and 35 = AS(i/2)8; where 8, is a suitable delta function on L. Adjusting
variables (£2 = —k? etc) one can then write

j(i)j—l VU ) X
5F,; =_____af kf-‘f JUR, T) =12 dx' dk.. (4.22)
T =T X

The only X dependence here is visible and one can differentiate under the integral sign in
(4.22). Since all F1 25, = 0 by the residue formula (2.32), for example we take j =2n —1
to obtain

-1
F zn-1=(—1)”2n f U k2 dk =

n
=(-1)"9"—'¥—f sin®*~2 @ cos® 9da—(-1)"(g) -2—21;1 (4.23)
_E 1

(here & = asiné and g = U). We summarize this in (cf [11] for more detail):

Theorem 3. For any situation with bounded D-bar data for § one can compute F; from
(4.21). In the case of DKdv with A S as indicated one can vse (4.23) to determine directly the

Fy2,) which will generate all the functions F;;. Generally, if 85 = f;}‘ BP(X', T, ¢, b)dX’

(as in (4.22)), then from (4.21) Fy; = (j/2=i) ffgl'laP de Ad§ and formally, 8,8; F =
(j/2mi) [ [ 97188, d¢ A dL since formally 8,35 = 38,5 = 8B,

Remark 4. The calenlations using {4.22) in fact agree with the determination of Fy 5,3
from residue calculations as in lemma 1 (note here 2U, = —U when adjusting notation
between sections 2 and 4). In general one may have some difficuities in determining 8B,
or 8P for example, so the formulae (4.22) and (4.23) may be exceptional in this regard.
However, for DKdV we have checked the validity of these formal integrals for F,; involving
38, for a number of terms (e.g. Fi(, Fs;, Fyg, Fs, and Fsy) agamst the results of residue
calculations. Here one can write for # odd 38, = 8§'+ = A{ = P"I¢ +AP and one gets
forn=2k=1, j=2m—1

sin 297 (cosf)cosHde  (4.24)

2(2m — DUAm=1 %
Py = e |

0
where a%~15%"1(cos8) = {#(P) for P = acosd (% = /). Let us mention also that

one can easily write down the tables of Fj; for DNKdv from the table (2.30). Thus for
DNKdV we have a reduction of the table (2.30) given via Fy,, = F,y = 0 for all m.
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